Symmetry Classes of Alternating-Sign Matrices under One Roof

نویسنده

  • Greg Kuperberg
چکیده

In a previous article [20], we derived the alternating-sign matrix (ASM) theorem from the Izergin determinant [12, 17] for a partition function for square ice with domain wall boundary. Here we show that the same argument enumerates three other symmetry classes of alternating-sign matrices: VSASMs (vertically symmetric ASMs), even HTSASMs (half-turn-symmetric ASMs), and even QTSASMs (quarterturn-symmetric ASMs). The VSASM enumeration was conjectured by Mills; the others by Robbins [28]. We introduce several new types of ASMs: UASMs (ASMs with a U-turn side), UUASMs (two U-turn sides), OSASMs (off-diagonally symmetric ASMs), OOSASMs (off-diagonally, off-antidiagonally symmetric), and UOSASMs (off-diagonally symmetric with U-turn sides). UASMs generalize VSASMs, while UUASMs generalize VHSASMs (vertically and horizontally symmetric ASMs) and another new class, VHPASMs (vertically and horizontally perverse). OSASMs, OOSASMs, and UOSASMs are related to the remaining symmetry classes of ASMs, namely DSASMs (diagonally symmetric), DASASMs (diagonally, anti-diagonally symmetric), and TSASMs (totally symmetric ASMs). We enumerate several of these new classes, and we provide several 2-enumerations and 3-enumerations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetry Classes of Alternating Sign Matrices

An alternating sign matrix is a square matrix satisfying (i) all entries are equal to 1, −1 or 0; (ii) every row and column has sum 1; (iii) in every row and column the non-zero entries alternate in sign. The 8-element group of symmetries of the square acts in an obvious way on square matrices. For any subgroup of the group of symmetries of the square we may consider the subset of matrices inva...

متن کامل

Enumeration of Symmetry Classes of Alternating Sign Matrices and Characters of Classical Groups

An alternating sign matrix is a square matrix with entries 1, 0 and −1 such that the sum of the entries in each row and each column is equal to 1 and the nonzero entries alternate in sign along each row and each column. To some of the symmetry classes of alternating sign matrices and their variations, G. Kuperberg associate square ice models with appropriate boundary conditions, and give determ...

متن کامل

The quantum symmetric XXZ chain at ∆ = − 12 , alternating sign matrices and plane partitions

We consider the groundstate wavefunction of the quantum symmetric antifer-romagnetic XXZ chain with open and twisted boundary conditions at ∆ = − 1 2 , along with the groundstate wavefunction of the corresponding O(n) loop model at n = 1. Based on exact results for finite-size systems, sums involving the wavefunc-tion components, and in some cases the largest component itself, are conjectured t...

متن کامل

On refined enumerations of totally symmetric self-complementary plane partitions II

In this paper we settle a weak version of a conjecture (i.e. Conjecture 6) by Mills, Robbins and Rumsey in the paper “Self-complementary totally symmetric plane partitions” J. Combin. Theory Ser. A 42, 277–292. In other words we show that the number of shifted plane partitions invariant under the involution γ is equal to the number of alternating sign matrices invariant under the vertical flip....

متن کامل

Extreme Diagonally and Antidiagonally Symmetric Alternating Sign Matrices of Odd Order

For each α ∈ {0, 1,−1}, we count alternating sign matrices that are invariant under reflections in the diagonal and in the antidiagonal (DASASMs) of fixed odd order with a maximal number of α’s along the diagonal and the antidiagonal, as well as DASASMs of fixed odd order with a minimal number of 0’s along the diagonal and the antidiagonal. In these enumerations, we encounter product formulas t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002